sexta-feira, 25 de maio de 2012

BACTÉRIAS


       Bacteria (do grego βακτηριον, bakterion: bastão) é um domínio de micro-organismos unicelularesprocariontes (desprovidos de envoltório e organelas membranosas), antes também chamados Schizomycetes.
          As bactérias são geralmente microscópicas ou submicroscópicas (detectáveis apenas com uso de um microscópio eletrônico). Suas dimensões geralmente não excedem poucos micrômetros, podendo variar entre cerca de 0,2 µm, nos microplasmas, até 30 µm, em algumas espiroquetas. Exceções são as bactérias Epulopiscium fishelsoni isoladas no tubo digestivo de um peixe, com um comprimento compreendido em 0,2 e 0,7 mm e Thiomargarita namibiensis, isolada de sedimentos oceânicos, que atinge até 0,75 mm de comprimento.
          Segundo o sistema taxonômico proposto por Robert Whittaker, em 1969, constituíam o reino Moneras, juntamente com as chamadas "algas azuis" ou "cianofíceas" - hoje mais corretamente chamadas cianobactérias.
           A classificação (2003) proposta por Thomas Cavalier-Smith reconhece dois domínios:
§  Prokaryota, compreendendo os reinos Archaea e Bacteria;
§  Eukaryota, que inclui todos os demais organismos, tanto unicelulares quanto pluricelulares).
          As bactérias podem ser encontradas na forma isolada ou em colônias. Podem viver na presença de ar (aeróbias), na ausência de ar (anaeróbias) ou, ainda, ser anaeróbias facultativas. Estão entre os organismos mais antigos, com evidência encontrada em rochas de 3,8 bilhões de anos.
          Segundo a Teoria da Endossimbiose, dois organelos celulares, as mitocôndrias e os cloroplastos teriam derivado de uma bactériaendossimbionte, provavelmente autotrófica, antepassada das atuais cianobactérias.
          Bactérias são os organismos mais bem sucedidos do planeta em relação ao número de indivíduos. A quantidade de bactérias no intestino de uma pessoa é superior ao número total de células humanas no corpo dela, por exemplo.
História:
Antonie van Leeuwenhoek, o primeiro microbiologista.
          Antonie van Leeuwenhoek, em 1673, usando um microscópio de lente simples projetado por ele mesmo, foi o primeiro cientista a observar a existência de micro-organismos. Durante os anos seguintes, van Leeuwenhoek publicou suas descobertas em uma série de cartas e manuscritos que enviou a Royal Society de Londres. Entre as correspondências mais importantes estão as do ano de 1676, que dedicam-se a descobertas de micro-organismos, chamados por ele de "animalículos". A primeira referência específica às bactérias é de uma carta datada de 9 de outubro de 1676.
          O termo Bacterium foi introduzido somente em 1828, pelo microbiologista alemão Christian Gottfried Ehrenberg. O gênero Bacteriumcompreendia bactérias com formato de bastão não formadoras de esporos. O gênero foi considerado um nomen genericum rejiciendum em 1954 pela Comissão Internacional de Nomenclatura Bacteriana.
          Esses seres microscópicos somente passaram a despertar o interesse dos cientistas no final do século XIXLouis Pasteur demonstrou em 1859 que o processo de fermentação era causado pelo crescimento de micro-organismos, e não pela geração espontânea. Pasteur e Robert Koch foram os primeiros cientistas a defender a teoria microbiana das enfermidades, ou seja, o papel das bactérias como vectores de várias doenças. Robert Koch foi ainda um pioneiro na microbiologia médica, trabalhando com diferentes enfermidades infecciosas, como a cólera, o carbúnculo e a tuberculose. Koch conseguiu provar a teoria microbiana das enfermidades infecciosas através de suas investigações da tuberculose, sendo o ganhador do prêmio nobel de medicina e fisiologia no ano de 1905. Estabeleceu o que é hoje denominado de postulado de Koch, mediante aos quais se padronizou uma série de critérios experimentais para demonstrar se um organismo é ou não o causador de uma determinada enfermidade. Estes postulados são utilizados até hoje.
           Apesar de no final do século XIX já se saber que as bactérias eram a causa de diversas doenças, não existia ainda um tratamento antibacteriano para combatê-las. Em 1910, Paul Ehrlich desenvolveu o primeiro antibiótico, por meio de tinturas que seletivamente coravam e matavam a bactéria Treponema pallidum. Ehrlich recebeu o nobel em 1908 por seus trabalhos em imunologia e por seus pioneirismo no uso de corantes para detectar e identificar as bactérias, base fundamental para o desenvolvimento da coloração de Gram e Ziehl-Neelsen.
           Um grande avanço no estudo das bactérias foi o reconhecimento realizado por Carl Woese em 1977, de que as arqueias e bactérias representam linhagens evolutivas diferentes. Esta nova taxonomia filogenética se baseava no sequenciamento do RNA ribossômico 16S e dividia os procariontes, até então classificados como Prokayota, em dois grupos evolutivos disntintos, em um sistema de três domínios: Bacteria, Archaea e Eukaryota.[
Origem e evolução
          Os ancestrais das bactérias modernas foram micro-organismos unicelulares que são as primeiras formas de vida a aparecer na Terra a cerca de 4 bilhões de anos atrás.         Por cerca de 3 bilhões de anos, todos os organismos foram microscópicos, e bactérias e arqueias foram as formas dominantes de vidaEmbora fósseis bacterianos existam, como os estromatólitos, sua falta de morfologia distintiva impede que estes sejam usados para examinar a história da evolução bacteriana, ou datar o tempo de origem de uma determinada espécie de bactéria. No entanto, sequências de genes podem ser usados para reconstruir a filogenia bacteriana, e estes estudos indicam que as bactérias divergiram primeiro da linhagem Archaea/Eukaryota
Taxonomia e filogenia
          A classificação das bactérias mudou radicalmente nos últimos anos, de forma a refletir o conhecimento atual sobre filogenia, como resultado dos recentes avanços na sequenciação dos genes,         na bioinformática e na biologia computacional. Atualmente as bactérias compõem um dos três domínios do sistema de classificação cladístico.
          A descoberta da estrutura celular procariótica, distinta de todos os outros organismos (os eucariontes), levou os procariontes a serem classificados como um grupo separado ao longo do desenvolvimento dos esquemas de classificação de seres vivos. As bactérias foram inicialmente classificadas entre as plantas por Lineu  e agrupadas com os fungos (na classe Schizomycetes), com exceção das cianobactérias que eram consideradas "algas azuis"; em 1866Ernst Haeckel incluiu-as no reino Protista; em 1969, foram incluídas entre os procariotas no reino Monera por Whittaker. Em 1977, com o advento das técnicas moleculares, Carl Woese dividiu os procariotas em dois grupos, com base nas sequências "16S" do rRNA, que chamou de Eubactéria e Archaebacteria, mais tarde, renomeados por ele próprio para Bacteria eArchaea. Woese argumentou que estes dois grupos, em conjunto com os eucariotas, formam domínios separados com origem e evolução separadas a partir de um organismo primordial. Desta forma, as bactérias poderiam ser divididas em vários reinos, mas normalmente são tratadas como um único reino, dividido em filos ou divisões. São geralmente consideradas um grupo monofilético, mas esta noção tem sido contestada por alguns autores. Alguns cientistas, no entanto, consideram que as diferenças genéticas entre aqueles dois grupos procariotos não justificam a divisão e que tanto as arqueobactérias como os eucariontes provavelmente se originaram a partir de bactérias primitivas.
              Vulgarmente, utiliza-se o termo "bactéria" para designar também as archaeas, que actualmente constituem um domínio separado. As cianobactérias (as "algas azuis") são consideradas dentro do domínio Bactéria.
             Além da sequência do RNA ribossomal, arqueias e bactérias diferem, entre outras características, na constituição química da parede celular. As arqueias não apresentam, em sua parede celular, o peptidoglicano, constituinte típico das bactérias.

Morfologia

Morfologia bacterianas
          As bactérias classificam-se morfologicamente de acordo com a forma da célula e com o grau de agregação:
Quanto a forma
Coco: De forma esférica ou subesférica.
Bacilo: Em forma de bastonete (do género Bacillus)
Vibrião: Em forma de vírgula (do Gênero Vibrio)
Espirilo: de forma espiral/ondulada (do gênero Spirillum)
Espiroqueta: Em forma acentuada de espiral.
Quanto ao grau de agregação
Apenas os Bacilos e os cocos formam colônias.
Diplococo: De forma esférica ou subesférica e agrupadas aos pares.
Estreptococos: Formam cadeia semelhante a um "colar".
Estafilococos: Uma forma desorganizada de agrupamento, formando cachos.
Sarcina: De forma cúbica, formado por 4 ou 8 cocos simetricamente postos.
Diplobacilos: Bacilos reunidos dois a dois.
Estreptobacilos: Bacilos alinhados em cadeia.

Estrutura Bacteriana


Estruturas de uma célula bacteriana gram-positiva. 
          A célula bacteriana, por ser procariótica, não possui organelos membranares nem DNA organizado em verdadeiros cromossomas, como os das células eucariotas.
Estruturas da célula procariota:
1.     Os pili são microfibrilas proteicas que se estendem da parede celular em muitas espécies Gram-negativas. Têm funções de ancoramento da bactéria ao seu meio e são importantes na patogénese. Um tipo especial de pilus é o pilus sexual, estrutura oca que serve para ligar duas bactérias, de modo a trocarem plasmídeos.
2.     Os plasmídeos são pequenas moléculas de DNA circular que coexistem com o nucleóide. São comumente trocados na conjugação bacteriana. Os plasmídeos têm genes, incluindo frequentemente aqueles que protegem a célula contra os antibióticos.
3.     Há cerca de 20 mil ribossomos em um citoplasma bacteriano. Os ribossomos procariotas são diferentes dos eucariotas e essas diferenças foram usadas para desenvolver antibióticos que só afectam os ribossomos bacterianos.
4.     citoplasma é preenchido pelo hialoplasma, um líquido com consistência de gel, semelhante ao dos eucariotas, com sais, glicose e outros açúcares, RNA, proteínas funcionais e várias outras moléculas orgânicas.
5.     membrana celular é uma dupla camada de fosfolípidos, com proteínas imersas.
6.     parede celular bacteriana é uma estrutura rígida que recobre a membrana citoplasmática e confere forma às bactérias. É uma estrutura complexa composta por peptidoglicanos - polímeros de carboidratos ligados a proteínas. É alvo de muitos antibióticos, incluindo a penicilina e seus derivados, que inibem as enzimas transpeptidasecarboxipeptidase, responsáveis pela síntese dos peptidoglicanos. Contém em espécies infecciosas a endotoxina lipopolissacarídeo (LPS).
7.   Algumas espécies de bactérias têm uma camada de polissacarídeos que protege contra desidratação, fagocitose e ataque de bacteriófagos, chamada de cápsula.
8.     nucleóide consiste em uma única grande molécula de DNA com proteínas associadas, sem delimitação por membrana - portanto, não é um verdadeiro núcleo. O seu tamanho varia de espécie para espécie.
9.     flagelo é uma estrutura proteica que roda como uma hélice. Muitas espécies de bactérias movem-se com o auxílio de flagelos. Os flagelos bacterianos são completamente diferentes dos flagelos dos eucariotas.
          Além dessas estruturas há também:
Vacúolos bacterianos: não são verdadeiros vacúolos, já que não são delimitados por dupla membrana lipídica como os das plantas. São antes grânulos de substâncias de reserva, como açúcares complexos.
Algumas bactérias podem enquistar, formando um esporo, com um invólucro de polissacáridos mais espesso e ficando em estado de vida latente enquanto as condições ambientais forem desfavoráveis.

Movimento

Os diferentes arranjos dos flagelos bacterianos.
          As bactérias móveis deslocam-se, quer através da utilização de flagelos, quer deslizando sobre superfícies, ou ainda por alterações da sua flutuabilidade. As espiroquetas constituem um grupo único de bactérias que possuem estruturas semelhantes a flagelos designadas por filamentos ligados a dois pontos da membrana celular no espaço Peri plasmático, além de terem uma forma helicoidal que gira no meio para se movimentar.
       Os flagelos bacterianos encontram-se organizados de diferentes formas: algumas bactérias possuem um único flagelo polar (numa extremidade da célula), enquanto outras possuem grupos de flagelos, quer numa extremidade, quer em toda a superfície da parede celular (bactérias “perítricas”).
Taxia
      As bactérias podem mover-se por reação a certos estímulos, um comportamento chamado "taxia" (também presentes nas plantas), como por exemplo, quimiotaxia, fototaxia, mecanotaxia e magnetotaxia - bactérias que fabricam cristais de magnetita ou greigita, materiais com propriedades magnéticas, e orientam seus movimentos pelo campo magnético terrestre, como a bactéria Magnetospirillum magnetotacticum.
           Num grupo particular, as mixobactérias, as células individuais atraem-se quimicamente e formam pseudo-organismos amebóides que, para além de "rastejarem", podem formar frutificações.
Metabolismo segundo fontes de energia e carbono
Fonte de carbono
       De acordo com a fonte de átomos de carbono para a produção de suas moléculas orgânica, elas são classificadas em dois grandes grupos:
Autotróficas: As bactérias autotróficas obtêm suas moléculas de carbono apenas de dióxido de carbono.
Heterotróficas: São bactérias que obtêm seus átomos de carbono de moléculas orgânicas que captam do ambiente. Além do gás carbônico ela precisa de um carboidrato.
Fonte de energia
           Bactérias podem utilizar como fonte de energia luz, substâncias inorgânicas ou orgânicas:
Luz: Como as bactérias que fazem fotossíntese ou fototróficas.
Compostos químicos: Como as bactérias quimiotróficas.
 Composto inorgânico: litotróficas
Composto orgânico: organotróficas

Classificação segundo o metabolismo
          Se forem combinadas as classificações de fonte de energia e de fonte de átomos de carbono expostas acima, pode-se classificar as bactérias em quatro grandes grupos, quanto a suas necessidades nutricionais:
Fotoautotróficas
     Bactérias fotoautotróficas são capazes de produzir elas mesmas as substâncias orgânicas que lhes servem de alimento, tendo como fonte de carbono o gás carbônico e como fonte de energia a luz.
Cianobactérias: são fotolitoautotróficas e aparentemente foram as pioneiras no uso da água como fonte de elétrons. Incluiriam as proclorófitas (gêneros Prochloron,Prochlorothrix e Prochlorococcus), apesar de se distinguirem destas por apresentar apenas clorofila a, além de ficobilinas azul e vermelha. Esses pigmentos são responsáveis pelas diversas colorações, muitas vezes brilhantes, que essas bactérias apresentam.
Sulfobactérias: realizam um tipo de fotossíntese em que a substância doadora de hidrogênio não é a água, mas compostos de enxofre, principalmente o gás sulfídrico (H2S). Por isso essas bactérias produzem enxofre elementar (S) como subproduto da fotossíntese, e não gás oxigênio, como na fotossíntese que utiliza H2O.
Fotoeterotróficas
          As bactérias fotoheterotróficas utilizam luz como fonte de energia, mas não convertem exclusivamente o gás carbônico em moléculas orgânicas. Assim, elas utilizam compostos orgânicos que absorvem do meio externo, como alcoóis, ácidos graxos, glicídios etc, como fonte de carbono para a produção dos componentes orgânicos de sua célula. Essas células são bactérias anaeróbias e, como exemplo, pode-se citar as bactérias não-sulfurosas verdes como Chloroflexus spp., e as não-sulfurosas púrpuras, comoRhodopseudomonas spp.
Quimioautotróficas
        As bactérias quimioautotróficas utilizam oxidações de compostos inorgânicos como fonte de energia para a síntese de substâncias orgânicas a partir de gás carbônico (CO2) e de átomo de hidrogênio (H) proveniente de substâncias diversas. As substâncias orgânicas produzidas são utilizadas como matéria-prima para a formação dos componentes celulares ou degradadas para liberar energia para o metabolismo.
Quimioeterotróficas
          A maioria das espécies bacterianas apresenta nutrição quimioeterotrófica ou seja, tanto a fonte de energia quanto a de átomos são moléculas orgânicas que a bactéria ingere como alimento. De acordo com a fonte das substâncias que lhe servem de alimento, as bactérias heterotróficas são classificadas em saprofágicas e parasitas. Exemplo:Clostridium.
Saprofágicas: alimentam-se a partir de matéria orgânica sem vida, como cadáveres ou porções descartadas por outros seres vivos.
Parasitas: alimentam-se a partir de tecidos corporais de seres vivos e podem ser patogênicas.

Identificação laboratorial
Placa de ágar com colônias de bactérias
1.    Coleta de amostras: é a primeira etapa para o isolamento e identificação. Varia conforme a fonte da amostra ou habitat da bactéria. Uma coleta de amostra de um rio para análise de coliformes terá metodologia diferente daquela feita a partir dos tecidos ou secreções infectadas de um doente e assim por diante.
2.    Cultivo: as amostras podem ser cultivadas em meios de enriquecimento ou não antes de serem transferidas para placas de Petri com o meio de cultura apropriado. Podem ser empregados meios de cultura seletivos para determinados grupos metabólicos de bactérias.
3.    Identificação: vários métodos podem ser empregados para identificar espécies ou outros grupos bacterianos. Tais métodos muitas vezes são usados ao mesmo tempo e costumam ser empregados em colónias bacterianas previamente isoladas. O tipo de colônia já pode sugerir o organismo em questão: de uma forma geral, os bacilos gram negativos apresentam colônias brilhantes, úmidas ou cremosas; os estafilococos apresentam colônias médias opacas e os estreptococos colônias pequenas e opacas (podendo ser hemolíticas ou não, quando são cultivadas em ágar sangue de carneiro 5%).
Técnicas de coloração: na técnica de Gram ou na técnica de Ziehl-Neelsen, colônias bacterianas são espalhadas numalâmina, onde são fixadas e coloridas. Em seguida, as bactérias são observadas ao microscópio óptico e identificadas pela morfologia e coloração.
Testes bioquímicos: diferentes meios seletivos e podem ser empregados para avaliar a capacidade de ou a diferença na metabolização de certas substâncias por bactérias. A sensibilidade a diversos fatores também pode ser avaliada, assim como teste de sensibilidade aos antibióticos.
Análises moleculares como a reação em cadeia da polimerase também podem ser usadas para identificação bacteriana, mesmo sem isolamento de colônia.

 

Classificação Gram

          Muito usada para identificar bactérias, é feita com base em uma técnica de coloração desenvolvida pelo microbiologista dinamarquês Hans Christian Gram, a técnica de Gram; dividindo as bactérias em dois grupos:
Gram-positivas: bactérias que possuem parede celular com uma única e espessa camada de peptidoglicanos. Pelo emprego da coloração de Gram, tingem-se na cor púrpura ou azul quando fixadas com cristal violeta, porque retêm esse corante mesmo sendo expostas a álcool.
Gram-negativas: bactérias que possuem uma parede celular mais delgada e uma segunda membrana lipídica - distinta quimicamente da membrana plasmática - no exterior desta parede celular. No processo de coloração o lipídio dessa membrana mais externa é dissolvido pelo álcool e libera o primeiro corante: cristal violeta. Ao término da coloração, essa células são visualizadas com a tonalidade rosa-avermelhada do segundo corante, safranina que lhes confere apenas a coloração vermelha.

 

Crescimento e Reprodução

          As bactérias podem se reproduzir com grande rapidez, dando origem a um número muito grande de descendentes em apenas algumas horas. A maioria delas reproduz-se assexuadamente, por cissiparidade, também chamada de divisão simples ou bipartição. Nesse caso, cada bactéria divide-se em duas outras bactérias geneticamente iguais, supondo-se que não ocorram mutações, isto é, alterações em seu material genético.
          Em algumas espécies de bactérias pode ocorrer recombinação de material genético. É o caso da conjugação, como descrito abaixo.
Transferência de material genético
                 A maioria das bactérias possui uma única cadeia de DNA circular. As bactérias, por serem organismos assexuados, herdam cópias idênticas do genes de suas progenitoras (ou seja, elas são clonais).
        Algumas bactérias também transferem material genético entre as células. A transferência de genes é particularmente importante na resistência à antibióticos. A resistência a antibióticos acontece devido à "colocação" de um plasmídio cuja expressão confere essa resistência ao antibiótico.
              A maioria das bactérias não apresenta reprodução sexuada, mas podem ocorrer misturas de genes entre indivíduos diferentes, o que é chamado de recombinação genética. Esse processo leva à formação de novos indivíduos com características genéticas diferentes, resultando na mistura de material genético. Uma bactéria pode adquirir genes de outra bactéria e misturá-los aos seus de três maneiras diversas:

Transformação bacteriana
          Ocorre pela absorção de moléculas ou fragmentos de moléculas de DNA que estejam dispostas no ambiente, proveniente de bactérias mortas e decompostas; a célula bacteriana transformada passa a apresentar novas características hereditárias, condicionadas pelo DNA incorporado. Este não precisa ser de bactérias da mesma espécie; em princípio, qualquer tipo de DNA pode ser capturado se as condições forem adequadas. Entretanto, um DNA capturado só será introduzido no cromossomo bacteriano se for semelhante ao DNA da bactéria receptora.
Transdução bacteriana
          Consiste na transferência indireta de segmentos de moléculas de DNA de uma bactéria para outra. Isso ocorre porque, ao formarem-se no interior das células hospedeiras, os bacteriófagos podem eventualmente incorporar pedaços do DNA bacteriano. Depois de serem liberados, ao infectar outra bactéria, os bacteriófagos podem transmitir a ela os genes bacterianos que transportavam. A bactéria infectada eventualmente incorpora em seu cromossomo os genes recebidos do fago. Se este não destruir a bactéria, ela pode multiplicar-se e originar uma linhagem "transduzida" com novas características, adquiridas de outras bactérias via fago.
Conjugação bacteriana

         Consiste na transferência de DNA diretamente de uma bactéria doadora para uma receptora através de um tubo de proteína denominado pêlo sexual ou pilus, que conecta o citoplasma de duas bactérias. Os pili estão presentes apenas em bactérias F+, ou seja, bactérias portadoras de um plasmídio denominado F (de fertilidade), e essas são as doadoras de DNA. As que não possuem o plasmídio F atuam como receptoras, sendo chamadas de F-. O DNA transferido neste processo é quase sempre o plasmídio F e algumas vezes, um pequeno pedaço de DNA cromossômico une-se ao plasmídio e é transferido junto com ele. Na bactéria receptora pode ocorrer recombinação genética entre o cromossomo e o fragmento de DNA unido ao plasmídio F recebido. Assim, a conjugação possibilita o aumento da variabilidade genética na população bacteriana.



Conclusão



Importância das bactérias
            Os vários tipos de bactérias podem ser prejudiciais ou úteis para o meio ambiente e para os seres vivos. Com técnicas da biotecnologia já foram desenvolvidas bactérias capazes de produzir drogas terapêuticas, como a insulina.
Na indústria de alimentos
            Existem várias espécies de bactérias usadas na preparação de comidas ou bebidas fermentadas, incluindo as láticas para queijos, iogurtevinhosalsicha, frios, pickleschucrute (sauerkraut em alemão), azeitonamolho de sojaleite fermentado e as acéticas utilizadas para produzir vinagres.
Na saúde humana

Staphylococcus aureusCocos gram-positivos de importância médica.
             O papel das bactérias na saúde, como agentes infecciosos, é bem conhecido: o tétano, a febre tifoide, a pneumonia, a sífilis, a cólera e tuberculose são apenas alguns exemplos. O modo de infecção inclui o contato direto com material infectado, pelo ar, comida, água e por insetos. A maior parte das infecções pode ser tratada com antibióticos e as medidas antissépticas podem evitar muitas infecções bacterianas, por exemplo, fervendo a água antes de tomar, lavar alimentos frescos ou passar álcool numa ferida. A esterilização dos instrumentos cirúrgicos ou dentários é feita para os livrar de qualquer agente patogénico.
           No entanto, muitas bactérias são simbiontes do organismo humano e de outros animais como, por exemplo, as que vivem no intestino ajudando na digestão e evitando a proliferação de micróbios patogénicos.
Na ecologia
            No solo existem muitos micro-organismos que trabalham na transformação dos compostos de nitrogénio em formas que possam ser utilizadas pelas plantas e muitos são bactérias que vivem na rizosfera (a zona que inclui a superfície da raiz e o solo que a ela adere). Algumas destas bactérias – as nitro bactérias - podem usar o nitrogénio do ar e convertê-lo em compostos úteis para as plantas, um processo denominado fixação do nitrogénio. A capacidade das bactérias para degradar uma grande variedade de compostos orgânicos é muito importante e existem grupos especializados de micro-organismos que trabalham na mineralização de classes específicas de compostos como, por exemplo, a decomposição da celulose, que é um dos mais abundantes constituintes das plantas. Nas plantas, as bactérias podem também causar doenças.
            As bactérias decompositoras atuam na decomposição do lixo, sendo essenciais para tal tarefa. Também podem ser utilizadas para biorremediação atuando na biodegradação de lixos tóxicos, incluindo derrames de hidrocarbonetos.
Na indústria farmacêutica: produção de hormônio
            Em 1977, obteve pela primeira vez a síntese de uma proteína humana por uma bactéria transformada. Um segmento de DNA com 60 pares de nucleotídeos, contendo o código para síntese de somatostatina (um hormônio composto de 14 aminoácidos) foi ligado a um plasmídeo e introduzido em uma bactéria, a partir da qual foram obtidos clones capazes de produzir somatostatina.
            A insulina foi a primeira proteína humana produzida por engenharia genética em células de bactérias e aprovada para uso em pessoas. Até então, a fonte desse hormônio para tratamento de diabéticos eram os pâncreas de bois e porcos, obtidos em matadouros.           Apesar de a insulina desses animais ser muito semelhante à humana, ela causa problemas alérgicos em algumas pessoas diabéticas que utilizavam o medicamento. A insulina produzida em bactérias transformadas, por outro lado, é idêntica à do pâncreas humano e não causa alergia, devendo substituir definitivamente a insulina animal.
            O hormônio do crescimento, a somatotrofina, foi produzido pela primeira vez em bactérias em 1979, mas a versão comercial só foi liberada em 1985, após ter sido submetida a inúmeros testes que mostraram sua eficácia. O hormônio de crescimento é produzido pela hipófise, na sua ausência ou em quantidades muito baixa, a criança não se desenvolve adequadamente. Até pouco tempo atrás, a única opção para crianças que nasciam com deficiência hipofisária somatotrofina era tratamento com hormônio extraído de cadáveres. Agora esse hormônio é produzido por técnicas de engenharia genética.
 Fonte: Wikipédia

As Bactérias e suas características

Trabalho feito pelo "Grupo 7"

Marcos Henrique de Castro
Mateus Filipe Silveira
Rafael Henrique Ribeiro
Stanley Batista de Oliveira
José Carneiro Cabral


Professor: Carlos Eduardo Estêves de Paula

Nenhum comentário:

Postar um comentário